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We analyze the origin and features of localized excitations in a discrete two-dimensional Hamil-
tonian lattice. The lattice obeys discrete translational symmetry, and the localized excitations exist
because of the presence of nonlinearities. We connect the presence of these excitations with the
existence of local integrability of the original N degree of freedom system. On the basis of this
explanation we make several predictions about the existence and stability of these excitations. This
work is an extension of previously published results on vibrational localization in one-dimensional
nonlinear Hamiltonian lattices [Phys. Rev. E 49, 836 (1994)]. Thus we confirm earlier suggestions
about the generic property of Hamiltonian lattices to exhibit localized excitations independent of

the dimensionality of the lattice.
PACS number(s): 03.20.+i, 63.20.Pw, 63.20.Ry

I. INTRODUCTION

In this contribution we will deal with vibrational local-
ization in Hamiltonian lattices without any kind of disor-
der. We consider a solution of a set of coupled ordinary
differential equations (CODEs) of an underlying Hamil-
tonian system. The localization property of the solution
implies the solution to be essentially zero (constant) out-
side a certain finite volume of the system. Inside the
specified volume the solution has some oscillatory time
dependence. The absence of disorder implies the exis-
tence of certain discrete (CODE) translational symme-
tries of all possible solutions.

Usually vibrational localization can be produced by
considering a lattice with a defect (diagonal or off-
diagonal disorder) [1]. Another well known possibility
is to consider lattices with more than one ground state
(global minima of the potential energy) and static kink-
like distortions of the lattice. The presence of the kinklike
static (stable) distortion of the lattice breaks the discrete
translational symmetry as in the case of a defect. This is
the key ingredient to get localized vibrations (localized
modes) centered around either the defect or the kinklike
distortion [1]. It is worthwhile to mention that the exis-
tence of kinklike distortions implies that the underlying
Hamiltonian lattice is nonlinear.

However, it was known for a long time that special
partial differential equations admit breather solutions.
These breather solutions are exact localized vibrational
modes, which require neither disorder nor kinks. In the
case of the sine-Gordon (SG) equation the tangent of
the breather solution is given by a product of space-
dependent and periodic time-dependent functions [2].
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The SG system has a phonon band with a nonzero lower
phonon band edge (the upper band edge is not present
since its finiteness would imply the discreteness of the
system). The fundamental frequency of the breather lies
in the phonon gap below the phonon band. The rep-
resentation of the inverse tangent of the periodic time
master function in a Fourier series shows up with con-
tributions from higher harmonics of the fundamental fre-
quency. These higher harmonics will certainly lie in the
phonon band. The stability of the breather solution in
such a partial differential equation will depend on some
orthogonality properties between the breather (higher
harmonics) and the extended solutions (phonons) [3].
The fulfilling of all these orthogonality relations seems
to be connected to the fact that the SG equation is in-
tegrable, i.e., admits an infinite number of conservation
laws. Thus it appears logical that the SG breather solu-
tions survive only under nongeneric perturbations of the
underlying Hamiltonian field density [4,5]. Indeed efforts
to find breather solutions in partial differential equations
of the Klein-Gordon type (i.e., closely related to the SG
case) failed, e.g., for the ®* equation [6]. The ®* equa-
tion is not integrable.

Consider now instead of a partial differential equation
a Hamiltonian lattice. It will have at least one ground
state. Generically the expansion of the potential energy
around the ground state yields in lowest order a har-
monic system and thus phonons. However, the phonon
band will now have a finite upper band edge. Thus we
can imagine the creation of a breatherlike localized state
with its frequency either above the phonon band or even
in a nonzero gap below the phonon band. In the first case
there will never be resonances between any harmonics of
the time function governing the evolution of the discrete
breather and phonons. In the second case we can again
avoid resonances by a proper choice of the fundamen-
tal frequency and the requirement that the phonon band
width is smaller than the gap width. Hence we seem to
lose the necessity to satisfy an infinite number of orthog-
onality relations as in the continuum case. That could
mean in turn that the existence of discrete breather so-
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lutions will not be restricted to a subset of nongeneric
Hamiltonian lattices.

Indeed over the past six years there have been sev-
eral reports on the existence of discrete breathers in var-
ious one-dimensional nonintegrable Hamiltonian lattices
of the Fermi-Pasta-Ulam type and the Klein-Gordon type
[7-14]. Unsurprisingly one will find no rigorous deriva-
tion of the discrete breather solution in those reports; it
would be better to say that numerical results and several
approximate analytical results strongly imply the exis-
tence of discrete breathers in one-dimensional noninte-
grable Hamiltonian lattices.

Recently a careful study of the above mentioned
system classes revealed an understanding for the phe-
nomenon of discrete breathers in terms of phase space
properties of the underlying system [15-18]. We will call
these discrete breathers nonlinear localized excitations
(NLEs). It was shown that the NLE solution can be
reproduced with very high accuracy considering the dy-
namics of a reduced problem. In the reduced problem one
keeps the few degrees of freedom which are essentially in-
volved in the NLE solution of the extended system. It
turned out that the NLE solutions correspond to regular
trajectories in the phase space of the reduced problem.
These regular trajectories belong to a certain compact
subpart of the phase space which can be called regular
island. The NLE regular island is separated by a sep-
aratrix from other regular islands which correspond to
extended states in the full system. Trajectories of the
reduced problem on the separatrix itself as well as in a
certain energy-dependent part of the phase space sur-
rounding it are chaotic because the full system as well
as the reduced problem are nonintegrable. The whole
emerging picture we will call the local integrability sce-
nario.

As it follows from that scenario, single-frequency NLEs
correspond to the excitation of one main degree of free-
dom, which can be characterized by its action J; and
frequency w; = 0H/8J; [16]. Many-frequency NLEs cor-
respond to the excitation of several secondary degrees of
freedom, which can characterized by their actions J,,,
m = 2,3, and frequencies w,, = 0H/8J,, [16]. Stability
of the NLEs in the infinite lattice environment can be
studied with the help of mappings. A certain movabil-
ity separatrix can be defined by w3 = 0. This separatrix
separates the phase space into stationary NLEs (i.e., the
center of energy oscillates around a given mean position)
and movable NLEs (i.e., the center of energy can travel
through the lattice) [18].

On the basis of the local integrability scenario it was
recently possible to prove the generic existence of NLE
solutions in a one-dimensional nonlinear lattice with ar-
bitrary number of degrees of freedom per unit cell and
arbitrary (still finite) interaction range [19]. Moreover a
rigorous proof was given that periodic NLE solutions do
exist in a class of Fermi-Pasta-Ulam lattices [19].

From the local integrability scenario it follows that
there are no principal hurdles in going over to higher
lattice dimensions (by that we refer to the topology of
the interactions rather than the number of degrees of
freedom per unit cell). Indeed the NLEs are described
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through local properties of the phase space of the lattice
and no topological requirements on the potential energy
are necessary to allow for NLE existence. This is very dif-
ferent compared to the well known topologically induced
kink solutions, for which the one-dimensional lattice is
an analytical requirement. Only under very special con-
straints can one discuss kinklike solutions in lattices with
higher dimensions. Thus the NLE existence occurs to be
a generic property of a nonlinear Hamiltonian lattice. In-
deed a few numerical studies on NLEs in two-dimensional
Fermi-Pasta-Ulam lattices showed that NLEs exist there
20, 21).

The purpose of this contribution is to apply the suc-
cessful local integrability picture from one-dimensional
lattices [15, 18] to two-dimensional lattices. We will show
that we indeed again find NLE solutions (which are some-
what richer in their properties compared to the one-
dimensional case) which are quantitatively describable
with a reduced problem. We will show this by compar-
ing the phase space properties of the full lattice and the
reduced problem. We present a stability analysis of the
NLEs as well as a scheme to account for NLE proper-
ties. Finally we present arguments about the statistical
relevance of the NLEs in the considered lattices at finite
temperatures. Thus we are able to show the correct-
ness of our general approach to vibrational localization
in nonlinear Hamiltonian lattices and of viewing NLEs
as generic solutions in nonlinear discrete systems.

The paper is organized as follows. In Sec. II we in-
troduce the model and briefly review the properties of
NLEs in one dimension. In Sec. III examples of NLE so-
lutions in two dimensions are presented. Then we define
the reduced problem for the two-dimensional system; its
phase space structure is compared to the corresponding
part of the phase space of the whole lattice. A stability
analysis is described and different evolution scenarios of
NLEs are explained. Section IV is used for a discussion
of the results.

II. MODEL: SOLUTIONS IN ONE DIMENSION

We study the dynamics of lattices with one degree of
freedom per unit cell and nearest neighbor interaction.
The general Hamiltonian is given by

H= % S Py V(XEH% Y (Xz-Xg) -

R R g N
(1)
Here P; and X are canonically conjugated momentum
and displacement of the particle in the unit cell char-
acterized by the d-dimensional lattice vector R. The d
components of R are multiples of the lattice constant

a = 1. The interaction and on-site potentials ®(z) and
V(z) are defined through

®(z) = dny - (2)
n=2

V(z) = Zvng . (3)
n=2
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N in (1) means summation over all nearest neighbor po-
sitions R’ with respect to R. Hamilton’s equations of
motion for the model are
. . 8H
Xz=P Pg=———. 4
R R 'R 8X 5 (4)
Thus we exclude from our consideration cases with
(i) more than one degree of freedom per unit cell
and (ii) a larger interaction range. The reasons for
that are pragmatic—it will become too difficult at the
present stage to present a careful study for the excluded
cases. We mention the numerical investigations of one-
dimensional chains with two degrees of freedom per unit
cell in [22,23] and some qualitative thoughts in [24] about
long range interactions, where no indications of a change
of the NLE existence properties are found.

Let us briefly review the results for NLE properties
in the one-dimensional case. They are reported for two
major subclasses of (1)—(3): the Klein-Gordon lattices
[15-17] and the Fermi-Pasta-Ulam lattices [18]. In the
case of Klein-Gordon lattices one drops the nonlineari-
ties in the interaction ¢ = C # 0, ¢,~2 = 0 and allows
for nonlinearities to appear in the onsite potentials. Ex-
amples are the ®2 model [V (z) = 1/222 + 1/323], the
&% model [V(z) = 1/4(2% — 1)?], and the sine-Gordon
model [V(2) = cos(z)]. In the case of Fermi-Pasta-Ulam
(FPU) lattices one drops the on-site potential V(z) = 0
and allows for nonlinearities to appear in the interaction
®(z). In a convenient notation we will refer to them as
FPU kim models, where k,l, and m are positive integers
indicating the corresponding nonvanishing power coeffi-
cients in (3). The Klein-Gordon systems have a nonzero
lower phonon band edge frequency (if vz # 0) whereas
the Fermi-Pasta-Ulam systems have a zero lower phonon
band edge frequency. Consequently the FPU models ex-
hibit total momentum conservation and show up with
a zero frequency Goldstone mode, in contrast to the
Klein-Gordon lattices. Stable periodic (in time) NLEs
can be created in nearly all cited systems with frequen-
cies outside the phonon band (below or above for the
Klein-Gordon systems, above only for the FPU systems).
The lowest NLE energy is nonzero, i.e., there is a gap
in the density of states of NLEs for energies lower than
the threshold energy. There can be gaps at higher ener-
gies too, depending on resonance conditions between the
NLE frequency and the phonon frequencies. To allow for
stable NLEs with frequencies below the phonon band for
Klein-Gordon systems one has to require that the phonon
band width is smaller than the phonon gap width. One
can understand the existence of a gap in the NLE den-
sity of states by an approximate method to account for
the NLE frequency. It consists out of constructing an
effective nonlinear one-particle potential. The energy of
a particle moving in this effective potential is the NLE
energy and the fundamental frequency of its oscillation
is the NLE frequency. For small amplitude oscillations
(small energies) the frequency will lie always inside the
phonon band of the corresponding lattice. Increasing the
amplitude (energy) will change the frequency because of
the nonlinearity. Depending on the type of the effec-
tive potential the frequency can decrease or increase. At
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a certain value of the amplitude (energy) the frequency
leaves the phonon band; thus the NLE becomes a stable
excitation. This is also a very simple guide to the predic-
tion of the existence or nonexistence of NLEs in nonlinear
lattices. There will be no stable NLEs allowed to exist
in systems with, e.g., a zero lower phonon band edge and
an effective potential of the defocusing type, i.e., where
the frequency will always decay with increasing ampli-
tude (energy). Instructive examples are the Toda lattice
and the FPU 23 lattice.

Because of the localization character of the NLE so-
lutions essentially only a finite number of particles are
involved in the motion. Thus it is possible to define a re-
duced problem [16]. It consists of defining a finite volume
around the NLE center. All particles inside the finite vol-
ume are involved in the NLE solution; particles outside
essentially should not be involved. There is an uncer-
tainty in the definition of the finite volume. It comes
from the fact that the NLE solutions are not compact,
i.e., strictly speaking they incorporate an infinite num-
ber of particles (degrees of freedom) [25]. But a sharp
exponential decay of the amplitudes starting from the
center of the NLE provides a good finite volume choice
in many cases. Since the finite volume (reduced problem)
consists out of a finite number of degrees of freedom, it
becomes easier to analyze its phase space properties. As
it was shown in [16], there exist regular islands in the
phase space of the reduced problem. These regular is-
lands are separated by stochastic layers (destroyed reg-
ular motions on and near separatrices) from each other.
The motion in each of the regular islands appears to be
confined to a torus of corresponding dimension. Certain
islands can be labeled NLE islands. Periodic orbits (el-
liptic fixed points in corresponding Poincaré mappings)
from these NLE islands appear to be (nearly) exactly
the periodic NLE solutions from the full system. The
surprise came when it was shown that the quasiperiodic
orbits surrounding the periodic one correspond to many-
frequency NLEs in the full system [15, 16]. Although a
stability analysis shows that these many-frequency NLEs
are strictly speaking unstable (i.e., they cannot exist for
infinite times) [25], it turned out that their energy radi-
ation rate can be very weak, such that the lifetimes of
these many-frequency NLEs can become several orders
of magnitude larger than the typical internal periods. In
numerical experiments more than five orders of magni-
tude were easily found [16]. The lifetime of the many-
frequency NLEs will increase to infinity if one chooses
quasiperiodic orbits which are closer and closer to the
periodic orbit (the periodic NLE).

Other regular islands did not yield NLEs in the full
system. The same can be said about the orbits in the
stochastic layer. The reason for that is the resonance of
the fundamental frequencies in those regular islands with
the phonon frequencies. Motion in the stochastic layer
is chaotic; thus frequency spectra are continuous rather
than discrete. Consequently, generically there is always
overlap with the phonon frequencies and thus strong en-
ergy loss of the finite volume. We also mention inter-
esting long-time evolutional scenaria for many-frequency
NLEs as described in [16].



2296

The clear correspondence between regular islands in
the reduced problem and NLE solutions in the full system
allows for a deep understanding of the NLE phenomenon
on one side. On the other side it opens possibilities to ap-
ply the apparatus of nonlinear dynamics to explore NLE
properties. That was done in [18] to study the movability
properties of NLEs.

In the following we will apply the same procedure to
characterize NLE solutions in two-dimensional systems.
The success of our study will have several impacts. First
it will be a proof of the conjecture that the NLE existence
is not a specific one-dimensional solution such as, e.g.,
the kinks. This conjecture was formulated on the basis
of the local integrability picture [16] as described above.
Thus we strengthen the whole local integrability picture.
Second, establishing NLE solutions in two-dimensional
lattices undoubtly will increase the interest in the overall
phenomenon because of the variety of physical applica-
tions in contrast to the one-dimensional case. Moreover
by proving the conjecture about the unimportance of the
dimensionality of the lattice with respect to the NLE oc-
currence also three-dimensional applications become of
potential interest.

III. THE TWO-DIMENSIONAL CASE

A. Model specification: Numerical details

As an example we choose the ¢* lattice in two di-
mensions, ie., V(z) = 1/4(22 — 1)2, ®(z) = 1/2Cz?,
R = (I,m) with l,m = 0,41,+2,... [f. (1)~(3)]. The
two ground states of the system are given by X5z = *1.
The model has a phase transition at a finite tempera-
ture T., which is of no further concern here since we are
studying properties of single excitations above the ground
state (i.e., because of the localized character of the so-
lutions at effectively zero temperature). The parameter
C specifies the “discreteness” of the system, i.e., the ra-
tio of the phonon band width to the phonon gap width.
Since we are interested in vibrations localized on a few
particles, it is reasonable to compare the onsite potential
energy [V (z)] to the spring energy [®(z)] of a given parti-
cle when it is displaced relative to its nearest neighbors.
As it was shown in [16], besides the interaction parameter
C the energy (per particle) becomes a second significant
parameter in order to choose a reasonable ratio between
the two components of the potential energy. One can
easily take over the results from [16] if one rescales the
parameter C there by multiplying it with 2 (because in
the cited one-dimensional case the coordination number
was 2 compared to 4 in the two-dimensional case). Thus
a choice of C = 0.05 turns out to be a case of intermedi-
ate interaction for not too large energies, i.e., the on-site
potential energy is of the same order as the interaction
potential energy.

The dispersion relation for small amplitude phonons
(small amplitude oscillations around either ground state)

is given by
. of ke . of Tky
sin < N ) + sin (————N )J, (5)

wi, x, =2+4C
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where N is the length of one side of the squared lattice
and k. and k, are two integers under the condition 0 <
ke ky < (N -1).

In all numerical simulations a Runge-Kutta method of
fifth order with a time step At = 0.01 was used. We
compared our results to an independent code where a
Verlet algorithm with At = 0.005 was used and observed
no differences. In the studies of one-dimensional systems
the simulation of an infinite system was replaced with
a finite chain of such a length that the fastest phonons
could not make a turn and come back to the finite vol-
ume of the NLE excitation during the simulation time.
In two dimensions such a method would mean a squared
waste of computing time and ban us on parallel comput-
ers. However, there is another way to avoid recurrence of
phonons which are radiated from the NLE: to switchon a
(reflectionless) friction outside a given volume such that
the radiated phonons will be captured and eliminated.
The condition of reflectionlessness implies a gradual in-
crease of the friction with growing distance or, in other
words, a large number of collisions between phonons and
friction applied lattice sites. The friction is added to the
right-hand side of (4) in the form —vyzPgz. In the case
of a full system we work with a friction-free volume of
size 20 x 20 and an additional friction-applied boundary
of thickness ten particle distances on each side. Thus
the overall number of particles is 40 x 40 = 1600. The
friction is linearly increased in the friction-applied walls
from zero up to a maximum value of vy at the boundary
layer. At the boundaries periodic boundary conditions
are applied.

To proceed we have to optimize the maximum fric-
tion coefficient, since for 79 = 0 or yp = oo the phonons
are completely transmitted or reflected, respectively. We
simulate the linearized ®* lattice [V (z) = 22, ®(z) =
1/2C2?] with an initial condition, where the central par-
ticle is displaced by AX = 1 from its ground-state po-
sition, all other particles are held at their ground-state
positions and the velocities are zero. The corresponding
initial energy is E = 1.1. We let the system evolve and
measure the energy stored in the system E(t) and the en-
ergy stored in the central particle and its four neighbors
Es5(t) for t = 2000. The result is shown as a function
of 7o in Fig. 1. We find that for the chosen geometry
the optimum value for the maximum friction coefficient
is o = 0.005. The full time dependence of the two ener-
gies E(t) and Ej5(t) using o = 0.005 are shown in Fig.
2. We see that after waiting times of ¢ < 2000 the cen-
tral particle and its four neighbors lose more than 99.9%
of their initial energy. In the following we will use the
thus chosen value for the maximum friction coefficient
~o = 0.005 in all described simulations.

B. NLE solutions

Let us show a stable NLE solution. For that we pre-
pare the following initial condition: a central particle
at the ground-state position, nearest neighbors displaced
to X(nn) = —1.01163, the velocity of nearest neighbors
P, = 0.0225, the velocity of the central particle is
adjusted to the initial energy E = 0.3, and all other par-
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FIG. 1. Energy of the linearized ®* lattice after waiting initial energy E = 0.3 after waiting time ¢ = 3000 (for initial

time ¢ = 2000 as a function of 7o (cf. text). Dashed line,
total energy E of the system; solid line, energy Fs stored in
the central particle and its four neighbors.

ticles are at their ground-state positions with zero veloc-
ities. To characterize the localization properties we use
the local discrete energy density

1 1
es = 5Pz +V(Xg)+ E;Q(Xﬁ—xﬁ,) (6)

Let us define the energy stored on five particles [the cen-
tral particle R = (0,0) and its four neighbors]

e5=2eﬁ, , |R"|§1 .
R'l

(7)

In the inset in Fig. 3 we show es as a function of time for
the above given initial condition. Clearly we observe lo-
calization of vibrational energy for extremely long times.
One has to keep in mind that the typical oscillation times
are of the order of ¢t = 4. The stability property of
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FIG. 2. Time dependence of the energy of the linearized
®* lattice for o = 0.005. Dashed line, total energy E of the
system; solid line, energy Es.

conditions see text). The filled circles represent the energy
values for each particle; the solid lines are guides to the eye.
Inset: Time dependence of the NLE energy es.

the observed NLE is very similar to examples from one-
dimensional cases. The energy distribution in the NLE
solution after ¢ = 3000 is shown in Fig. 3. Essentially
five particles are involved in the NLE motion: a central
particle and its four nearest neighbors.

Since we used symmetrical initial conditions essentially
two degrees of freedom are excited. To describe the NLE
solution we construct a reduced problem in analogy to the
one-dimensional problem. The reduced problem consists
out of the five particles which are essentially involved
in the NLE motion. The rest of the lattice is held at its
ground-state position. Together with the consideration of
symmetric initial conditions we are left with the following
two degrees of freedom problem:

Q=Q-Q°+4C(¢-Q) , (8)

§=q¢-¢*+C(Q—q)—3C(1+q) . 9

Here Q = X(q,0) and ¢ = X(+1,+1) are the coordinates of
the central and nearest neighbor particles, respectively.
In the one-dimensional case it was shown that certain
solutions of the reduced problem correspond to NLE so-
lutions in the full system [16,17].

C. The reduced problem

Before we show that the same correspondence principle
works for the two-dimensional example in the present
work, we want to characterize the main features of the
system of equations (8) and (9).

In Figs. 4(a)—4(d) we show Poincaré mappings for the
reduced problem for energies E = 0.2,0.5,2.5,5, respec-
tively. As can be seen there the reduced problem is not
integrable since we find stochastic motion. Thus the en-
ergy is the only integral of motion. However, we find
islands of regular motion (regular islands) which are sep-
arated from each other by stochastic layers. The topol-
ogy of the stochastic layers indicates the topology of de-
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stroyed separatrices. For small energies £ = 0.2 [Fig.
4(a)] the thickness of the stochastic layer is too small to
be detected at all (in the presented resolution) so that
we find two regular islands which we label with the num-
bers 1 and 2. The elliptic fixed points of each regular
island correspond to time-periodic solutions of the re-
duced problem. Increasing the energy we find a rather
abrupt increase of the thickness of the stochastic layer
for 0.35 < E < 0.4. Thus at E = 0.5 [Fig. 4(b)] we are
faced with effects of period doubling (mcreasmg number
of regular islands) and a decrease of the size of the is-
lands. For E = 2.5 [Fig. 4(c)] nearly the whole available
phase space is filled with chaotic trajectories. However,
for higher energies [here E = 5 in Fig. 4(d)] the size of
the regular islands increases again. In the limit £ — oo
the reduced problem becomes infinitely close to an inte-
grable system of two noninteracting quartic oscillators.
A proper characterization of the regular islands is the
frequency of their corresponding elliptic fixed points. In
Fig. 5 the fixed point frequencies of the main regular is-
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and w? = 2+ 6C for island 2, both of the frequencies are
in the phonon band of the infinite system (5). From Fig.
5 it follows that there is a nonzero lower energy thresh-
old above which the fixed point frequency from island 1
becomes nonresonant with the phonon band.

For reasons discussed below we concentrate on island 1.
We denote its fixed point frequency by w; (here the index
refers not to the island number but to the degree of free-
dom excited in the island). Then several statements can
be made with respect to the secondary degrees of freedom
which can be excited (cf. the torus intersection structure
around the fixed point in island 1). Considering an in-
finitesimally small excitation of the second (symmetric)
degree characterized by its frequency w, one can show
that in the limit of zero energy w? = 2 + 6C (cf. the
Appendix). If one lifts the symmetry of the initial con-
ditions in the reduced problem one has to consider the
generalized reduced problem

4
Q=Q-Q°+) Cla-Q) ,

lands are shown as a function of energy. For small ener- (10)
gies the frequencies of the fixed points of regular islands 1 i—1
and 2 become the eigenfrequencies of the linearized prob-
lem (around the groundstate): w? = 2 + 2C for island 1 Gi=aq—-q¢ -3C(1+¢)+C(Q~-q) - (11)
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cles, fixed point frequency from regular island 1 in Fig. 4(a);
filled squares, fixed point frequency from regular island 2 in
Fig. 4(a); open triangles, frequency w; of the periodic NLE
solution from the full system; solid line, frequency of the ef-
fective potential; dashed lines, positions of the phonon band
edges.

Here Q = X(g,0) as in (8) and (9) and the four coordi-
nates ¢;, ¢ = 1,2, 3,4, denote the coordinates of the four
nearest neighbors of the central particle. Since we deal
with five degrees of freedom now we have to expect five
(instead of two) fundamental frequencies. The system
(10) and (11) has rotational symmetry of order 4. It fol-
lows (cf. the Appendix) that the three new frequencies
w3,w4,ws are equivalent to each other in the limit of in-
finitely small asymmetric perturbations of the fixed point
periodic solution. In the limit of zero energy it follows
that w? = w2 = w? = 2+4C. Increasing the energy from
its lowest value leads to a decrease of all five frequen-
cies. The inequality w; < w3 4,5 < wz (Which is true only
for low energy values) determines the sequence of the w;
crossings of the lower phonon band edge.

D. The correspondence principle

Let us show the connection between the reduced prob-
lem and the NLE solutions of the full system. For that
we plot in Fig. 5 the frequencies of (nearly) periodic
NLEs as a function of energy. We observe very good
agreement with the data of the fixed point frequency w;
from island 1 of the reduced problem. In fact one can
check that the whole time-dependent periodic NLE solu-
tion of the full system is very close to the corresponding
fixed point periodic solution from island 1 of the reduced
problem. Since the frequency w, of the symmetric pertur-
bation of the fixed point periodic NLE solution according
to the results from the reduced problem is in resonance
with phonon frequencies up to energy values of 1, we in-
crease the energy to E = 5 [cf. Fig. 4(d)] and perform a
Poincaré mapping for the NLE solutions of the full sys-
tem. The result is shown in Fig. 6 together with the
corresponding data from the reduced problem [cf. Fig.
4(d)]. The result is amazing: the torus intersections are
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FIG. 6. Poincaré intersection as in Fig. 4(d), except for

the following: open circles, result for the full system; dots,
result for the symmetric reduced problem [taken over from
Fig. 4(d)]. Note that because of the high density of dots solid
lines can be formed.

practically identically for the two-frequency NLE solu-
tion from the full system and the corresponding regular
trajectories from the regular island of the reduced prob-
lem. If one chooses an initial condition in the full system
that corresponds to the chaotic trajectory in the reduced
problem [Fig. 4(b)], then we find a quick decay of the
energy excitation in the full system as shown in Fig. 7.
If the energy is low enough the frequency w; of the
symmetric perturbation of the periodic NLE will come
into the phonon band. Then we expect a loss of the
energy part stored in the corresponding second degree of
freedom, leaving the main degree of freedom essentially
unaffected. To show that we simply perform a Poincaré
mapping for the case mentioned. The result is shown in
Fig. 8. Indeed instead of an intersection line with a torus
we find a spiral-like relaxation of the NLE solution onto
the periodic fixed point NLE. The fixed point periodic
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FIG. 7. Time dependence of the NLE energy in the full
system for initial condition corresponding to chaotic trajec-
tory in Fig. 4(b).
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FIG. 8. Poincaré intersection (as in Fig. 4) but for the
full system with initial condition X 5 _, = —1.0116, X|§|=1 =
—0.038112, and all other particles are at ground-state posi-
tion and zero velocity, except the velocity of particle RE=0
(adjusted to energy E = 0.3). The filled circles are the actual
mapping results. The lines are guides to the eye and connect
the circles in the order of their appearance. The spiral-like
form of the broken line indicates the evolution of the con-
traction of the NLE solution to the fixed point periodic NLE
solution.

NLE acts like a limit circle, although the whole system
is conservative.

E. Effective potential

Because of the smallness of the nearest neighbors am-
plitudes compared to the amplitude of the central par-
ticle in a NLE solution, we can try to account approx-
imately for the motion of the central particle assuming
that the nearest neighbors are at rest at their ground-
state positions. Then the central particle would move in
an effective potential

Ver(2) = V() +2C(z + 1)? . (12)

The motion in this potential is periodic with an energy-
dependent (or amplitude-dependent) period T} = 27 /w;.
Since most of the energy in the NLE solution is concen-
trated on the central particle and its binding energy to
the nearest neighbors, it is reasonable to compare the re-
sults for the energy dependence of w; for (12) with the
numerical result as given in Fig. 5. As can be seen in
Fig. 5, the overlap between the result from the effective
potential, the reduced problem, and the full system are
very good. Thus we have a proper method for predicting
the behavior of the main NLE frequency w; as a function
of energy. This method is directly taken over from the
known results in the one-dimensional case.

F. Stability properties

As it was shown in [15, 16] for the one-dimensional
case, it is possible to carry out a stability analysis for pe-
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riodic NLEs (i.e., the fixed point solutions) with respect
to extended phononlike perturbations. In fact the pro-
cedure for the stability analysis in the two-dimensional
case is exactly the same. Thus we will highlight here
only the necessary parts of the steps one has to follow.
We assume that we know an exact periodic NLE solution
X 5(t). Then we consider a slightly perturbed trajectory
Xz = Xg(t) + Ag(t). Since the assumed NLE solu-
tion is localized, it becomes infinitely small for large dis-
tances from the NLE center. This circumstance does not
pose a serious problem for the definition of the expression
“slightly perturbed.” One can just consider small ampli-
tude oscillations (phonons) around the ground state of
our system. Then we have a well defined small parameter
determining the weak nonlinear corrections to the linear
equations. We take over this definition of smallness to
our problem. In the center of the NLE the perturbation
will thus be small compared to the NLE contribution.
Far away from the center the perturbation can even be-
come large compared to the NLE contribution, but it will
be still small enough to ensure the linearized equations
work well. Then we can consider small perturbations of
the NLE solution which are extended.

In the next step we insert the perturbed ansatz into
the lattice equations of motion. Using the fact that the
unperturbed part is a solution of the equations of motion
and linearizing the equations with respect to the pertur-
bation yields a set of coupled differential equations with
time-dependent (periodic) coefficients. In analogy to [16]
we can define a map, the stability of which is equivalent
to the nongrowing of the small perturbation of the NLE
solution. The sufficient condition for the stability is that
neither of any multiple of half the NLE frequency is equal
to a phonon frequency (5):

Whaky L0 20,1,2,.. . (13)

wi 2
As we see this result explains the existence of an en-
ergy threshold (gap in the density of NLE states) for
the NLE solutions. Because the NLE frequencies ac-
cording to the reduced problem will always lie in the
phonon band for small enough NLE energies, the low en-
ergy NLEs are unstable against smallest perturbations.
In the one-dimensional case this statement was tested in
the full system using an entropy-like variable measuring
the degree of energy localization [16]. On approaching
the energy threshold (predicted by the results of the re-
duced problem together with the stability analysis) from
above the entropy drastically increases at the predicted
threshold value. It is still possible that low energy NLEs
exist with a very small degree of localization and with fre-
quencies very close to the phonon band edge, but outside
the band itself. In the two-dimensional case considered
here we also observe a very sharp transition in the degree
of localization at the predicted energy threshold value. In
fact it becomes impossible to find a NLE solution with
energies below the threshold value. That indicates the
tiny phase space part at low energies which still might
be occupied with weakly localized states.

A more subtle problem is the internal stability of pe-
riodic NLEs. As it is known for several one-dimensional
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systems, periodic NLE solutions can become internally
unstable, i.e., a weak symmetry breaking perturbation of
the periodic NLE will transform the NLE solution into
other existing periodic NLEs of different parity or even
into NLEs moving through the lattice [9, 13, 26]. Cur-
rently it is unclear how to classify and find the different
possible periodic NLE solutions on a two-dimensional lat-
tice. Efforts to do so are reported in [21]. We wish to
emphasize that the periodic NLE solutions reported in
this paper are certainly not the only ones allowed to
exit in the underlying lattice. Thus we can only make
statements about the internal stability of the NLE solu-
tions considered in the present work. Using the results
of the linearization of the equations of motion around
the periodic NLE solutions (see the Appendix) we can
trace the values of the squared secondary eigenfrequen-
cies w?,w3 , 5 and can report here that throughout the
considered cases all squared eigenfrequencies are posi-
tive. Consequently the periodic NLE solutions discussed
here are internally stable.

The results of the stability analysis drawn above do not
allow us to conclude about the existence of NLE solutions
in a strict general sense. As it was shown in [25] for the
one-dimensional case, periodic NLEs do not exist if any
multiple of the NLE frequency resonates with phonon fre-
quencies [this condition corresponds to the cases of even
integers n in (13)]. Also all multiple frequency NLEs are
strictly speaking unstable, since it is always possible to
find combinations of multiples of two or more frequencies
(whose ratio is irrational) resonating with phonon fre-
quencies. It appears currently unclear how to take over
the methods used in [25] for the one-dimensional case
and to the two-dimensional case in order to obtain the
existence criteria for NLE solutions. However, it can be
expected that the methodological problems do not alter
the results obtained in the one-dimensional case.

As it was shown in [27] the decay of the periodic NLE
solutions far away from the NLE center can be well de-
scribed by a Green’s function method, which yields ex-
ponential decay in the amplitudes.

IV. DISCUSSION

In the present work we have shown that it is possible
to take over the results on the existence and properties of
nonlinear localized excitations in nonlinear lattices from
lattice dimension one to lattice dimension two. Thus sev-
eral goals were achieved: (i) the existence of NLEs in two-
dimensional lattices is verified, (ii) the theory developed
for NLEs in one-dimensional systems appears to be of va-
lidity independent on the lattice dimension, and (iii) the
power of the theoretical framework to predict the exis-
tence of NLE solutions in several one-dimensional lattices
has been extended by its correct prediction of the NLE
existence in higher-dimensional lattices. Thus the NLE
existence in three-dimensional lattices can be considered
as highly likely. There is at the present no single rea-
son supporting the nonexistence of NLEs due to lattice
dimensions.

Besides the analysis of the properties of the secondary
frequencies (cf. the Appendix) the present work has also
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shown that the resonating of secondary frequencies with
phonon frequencies does not imply a shrinkage of the
phase space part of the system corresponding to NLE so-
lutions. Indeed as long as the main frequency w; stays
outside the band, the choice of an initial condition with
excited secondary degrees of freedom will still yield a
NLE. If the secondary frequencies are outside the phonon
band as well, the solution will be a (very weakly) decaying
multiple frequency NLE. If the secondary frequencies res-
onate with the phonon band, the corresponding energy
part stored in the NLE is radiated away and the NLE
“collapses” onto its periodic fixed point solution. This
attractorlike behavior ensures that there is still a finite
phase space volume around the fixed point periodic so-
lution which corresponds to NLEs even after extremely
long waiting times. Thus we have strong evidence for
the statistical relevance of NLE solutions in correspond-
ing lattices at finite temperatures. Indeed the only case
when NLEs can become statistically unimportant is when
the main frequency w; resonates with the phonon band.

We can conclude from our results on the energy radia-
tion of perturbed periodic NLEs and from the mentioned
existence proofs for periodic NLEs that the results on
radiation processes accounted for in [28] are wrong. In
order to get the leading order radiation of perturbed pe-
riodic NLEs one has to linearize the phase space flow of
the system around the unperturbed periodic NLE solu-
tion and not around the ground state of the system as it
was done in [28].

Let us finally address the following question: What
are the physical applications where one can expect NLEs
to exist? In the mathematical sense the answer is when
the main frequency w; can be “pulled out” of the phonon
band with increasing energy. To check the behavior of the
main frequency we have to construct the effective poten-
tial. Consider, e.g., a monoatomic crystal. The pair po-
tential of interaction is usually an asymmetric potential
around the stability position. The effective potential can
be constructed exactly as described in Sec. IIL If the re-
pelling part of the pair potential goes nonlinearly enough,
then there can be oscillations of a particle in the effective
potential with frequencies above the phonon band. How-
ever, one has also to check the minimum energy (energy
threshold) required for the NLE existence. As studies for
a particular class of crystals have shown, NLEs cannot
be excited there thermally because the melting point is
too low. However, it could still be possible to excite the
NLEs locally nonthermally [29]. If we consider crystals
with many atoms per unit cell, we can expect at least the
existence of phonon gaps between acoustic and different
optical zones. It is a well known approach to describe
structural phase transitions with the use of ®*-like mod-
els, simulating the behavior of certain soft phonon modes
essentially decoupled from other nonsoftening modes [30].
However, there might be too many problems on this path
to really make sure that ®*-lattice-type NLEs can exist
in such crystals. Another way of thinking leads us to the
fact that the adding of a periodic external field (onsite po-
tentials) can produce a finite phonon gap eliminating the
conservation of mechanical momentum. Such situations
are very likely in the case of atomic monolayers on proper
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substrate surfaces. If it becomes possible to choose such
cases, where the phonon band width becomes small com-
pared to the gap width, NLEs could exist. With these
arguments we did not intend to judge the different phys-
ical situations where NLEs are likely or unlikely to exist.
It was the search strategy we had in mind. It is one of the
forthcoming tasks to provide a foundation for these ideas
in order to proceed in the question of applicability. Still
the mathematical result that NLEs are generic solutions
of nonlinear lattices [19] serves as a powerful indicator of
their relevance in different physical realizations.
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APPENDIX

Here we consider Egs. (10) and (11) (the reduced prob-
lem describing NLE solutions). We consider a periodic
NLE solution at a certain energy E: Q®(t + 27/w;) =
Q(t), q;p) (t + 2m/wy) = g;(t). This solution represents
a closed orbit in the phase space of the reduced prob-
lem. If the system is integrable in a neighborhood of the
closed orbit, then each phase space trajectory from this
neighborhood belongs to some surface, which is diffeo-
morphic to a five-dimensional torus [31]. Then we can
introduce some new set of canonically conjugated coor-
dinates II,,,Q,, 1 = 1,2, 3,4, 5 such that

(A1)

Qn = Jysinw,t , I, = w,J, cosw,t .

Here J,,0,, = w,t denote the action-angle variables.
Without loss of generality we define the mentioned peri-
odic orbit with

|
J
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J1#0, J,=0 (n=2,3,4,5) . (A2)

For trajectories from a neighborhood of the periodic orbit
the old displacements and momenta will be some func-
tions of the new coordinates. These functions can be
expanded in Taylor series in the new coordinates. In the
limit J2 3,45 < J; the old coordinates will be a sum of
the unperturbed periodic orbit solution and four pertur-
bations each periodic with its own frequency (w2 3.4,5)-
Then we can represent the perturbed solution in a Fourier
series:

Q(t) — Z Aip)eikult
k=0,%£1,+2,...
+ ) (Anent 4 Anemint) (A3)
n=2,3,4,5
G(t)= Y aflet
k=0,%+1,%2,...
+ Z (aj,ne"“’"t+a;.ne‘i“’"t) . (A4)
n=2,3,4,5

In the limit Jp 345 < Jp it follows that [A,| < [4P|
and |ajn| € Iaﬁ-fz
Aip ) = A(_p,l‘ and a__(f ,2 = a:(f fk have to be satisfied.

In the next step we insert (A3) and (A4) into the equa-
tions of motion of the reduced problem (10) and (11)
and set equal to each other the terms on both sides of
the five equations containing the exponential e*~t. The
result is a linear set of equations for the five (infinitely
small) Fourier components A,,a;,. If we set equal the
terms containing the inverse exponential, the resulting
algebraic equations are identical. Moreover since the re-
sulting set is linear and all coefficients are real, it decom-
poses into two identical sets of equations for the real and
imaginary parts of the Fourier components A,,a;,. The
resulting algebraic problem is an eigenvalue problem:

w2 =Mr . (A5)

n

|. Because we deal with real functions

Here the vector 7 has five components and the matrix M
is given by

4C-1+a -C -C -C -C
-C 4C -1+ p 0 0 0
M = -C 0 4C—-1+8 0 0 (A6)
-C 0 0 4C—1+p 0
-C 0 0 0 4C -1+
f
with values of the matrix M in (A6). Since the matrix M has
five eigenvalues, and the number of considered frequen-
a= 3‘A((]P) 2+6 Yke12 |A£”) 12, (A7) cies was four, there is one eigenvalue left. This eigenvalue
o is nothing else but the squared frequency w? of the pe-
= 3|a((]10)|2 +6, ., laip)lz ] (A8) riodic orbit itself. Indeed a small perturbation of the

From (A7) and (A8) it follows that a = 3(Q®)’(¢)) and

B = 3(q(”)3 (t)), where the symbol (A(t)) means the time
average of the (periodic) function A(t). Because of (A5)
all squared frequencies w2 have to be equal to the eigen-

given periodic orbit can be such that a new periodic or-
bit at a slightly changed energy is created (because the
considered periodic orbits form a one-parameter family
of solutions, where the parameter is the frequency w; or
the energy of the solution). Since we exclude cases when
the periodic orbit is located on a separatrix, the change
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of the frequency w; under the considered perturbation
is a smooth function of the perturbation. Thus in first
order of the perturbation (which is considered here) the
change of the frequency w; does not show up (it will show
up in second order of the perturbation).

The eigenvalue problem (A5) and (A6) has rotational
symmetry of order 4 (this corresponds to the fact that
the periodic NLE orbit is a symmetric solution on the
squared lattice). Then there exists a linear operator
g acting on the five-dimensional space spanned by the
eigenvectors £, of M such that

g&n =& , g4£n =&n - (A9)
It follows that there can be no more than four asymmetric
eigenvectors g€, # .. But since their sum is invariant
under g, it follows that they span a three-dimensional
subspace (cf. Appendix 10 in [31]). Thus we end up with
three asymmetric eigenvectors of (A6) with threefold de-
generated eigenvalues
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wi=wl=wl=4C-1+0 . (A10)

The remaining two symmetric eigenvectors of (A6) are
nondegenerated. They can be calculated by constructing
the 2 x 2 matrix of all symmetric perturbations of the pe-
riodic orbit in analogy to the general case treated above.
The resulting frequencies are given by

Wi = sla+p % /{a— B +16C7 +4C -1,

wi=w_ , wp=wy . (All)

Result (A11) cannot be considered as a definition of w;
because one actually has to know a and (3, which are
functions of w;.

In the limit of low energies (small amplitudes of oscil-
lations) of the reduced problem it follows that o = 8 = 3
and the frequencies will all lie inside the phonon band of
the extended lattice:

wi=2+2C, wWi=2+6C , wj,s=2+4C . (A12)
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